Showing posts with label nerds. Show all posts
Showing posts with label nerds. Show all posts

Aug 29, 2024

Listen Up, Nerds


Weapons, predatory behavior, and big expensive brains.


Jess Thompson, PhD, Yale, is the kind of pro who knows her shit so well she can explain it in a way that makes it understandable to a dope like me. Which is a very good thing, because this kind of presentation is basically a combination progress report and sales pitch.

These efforts have to be funded, so she's showing the people who have ponied up the money so far, that spending more of their money on this stuff is worth it.

I think it is.

Jun 17, 2024

Electrifying The Hardhats

Progress is convincing the workin' guys that the cool new gear is all electric.

The fact that it's better for the future of their kids is, for now, secondary at best. What they care about right now - IMHO what they should care about - is whether or not the stuff works, and can it be a real benefit to them on the job?




SHIPPENSBURG, Pa. — On a 40-acre dirt and gravel lot, I climbed into the cabin of a 55,000-pound excavator. Construction crews use these hulking machines to dig trenches for laying pipes and wires or hollowing out building foundations. I took it out for a joyride.

10 steps you can take to lower your carbon footprint

When I switched on the motor, there was no ignition roar and no belch of diesel fumes from a tailpipe. This machine, powered by four batteries that each are big enough to run a small electric car, came to life silently.

The quiet didn’t last. The excavator’s giant treads trundled noisily over the gravel until I reached a good spot to dig. Then I grabbed hold of two joysticks and sank the bucket arm down into the dirt to scoop out as much earth as the claw could carry. I hit a big rock. The machine momentarily pitched forward, straining to loosen it from the ground — and then the electric motor heaved the boulder and a clod of dirt into the air in a puff of dust.

When they run on diesel, the biggest pieces of construction equipment can churn through 10 or more gallons of fuel per hour, emitting as much carbon and air pollution as several cars combined. Off-road equipment, including excavators, bulldozers, cranes and tractors, create about 3 percent of U.S. carbon emissions — roughly the same as the airline industry. Making these machines carbon-free would be almost as big a step toward halting climate change as taking all commercial planes out of the sky.


It won’t be easy. Electrifying off-road vehicles presents all the same challenges as replacing gas-powered cars with EVs, including worries about charging infrastructure, battery capacity and high upfront costs — plus the added challenge of digging, pushing and lifting heavy loads for hours at a time.

“They are more difficult because most of these vehicles don’t just propel themselves, they also do work,” said Kim Stelson, a mechanical engineering professor at the University of Minnesota who studies off-road vehicles. “But if we want to solve the overall problem [of climate change], we have to solve this one.”

Despite the obstacles, electric machines are slowly starting to show up at farms and construction sites. John Deere plans to sell more than 20 models of electric and hybrid construction equipment and tractors by 2026. Construction giants Caterpillar and Komatsu are developing electric excavators and wheel loaders. Volvo Construction Equipment, which made the excavator I was driving, sells seven electric models. “Almost all the major companies are working on electric solutions,” Stelson said.

How are electric and diesel machines different?

Volvo’s electric machines are very similar to its diesel machines, with the exception that their engines have been swapped out for batteries. The 55,000-pound electric excavator, for instance, has 264 kilowatt-hours of battery storage — the same as nine Mini Cooper EVs, or a little more than one electric Hummer.

I drove both the electric and diesel versions of the machine, and the differences between them mirrored the differences between EVs and gas-powered cars. The electric machine idled silently and its controls were slightly more responsive than the diesel one, since its electric motor can deliver power faster than a combustion engine — similar to the way an EV can accelerate faster than a gas-powered car. But both machines pulled dirt out of the ground with the same power.

You can see the similarities on display on the assembly line at Volvo Construction Equipment’s North American headquarters in Shippensburg. Similar hulking, half-formed chassis move down the lines for both types of vehicles. But, halfway through, a huge hook hanging from the ceiling will either lower an engine or a battery pack into the machine for workers to install.

The electric machines are catching on slowly. Of the 60,000 pieces of construction equipment Volvo delivered to customers last year, 895 were electric according to the company’s annual report. The company said it aims to offer electric versions of more than a third of its models by 2030.

Where might you spot electric construction equipment?

Electric machines are good for a particular kind of job site. The machines need a place to charge — which could be the same level 1, 2 or 3 chargers that EVs plug into in buildings, parking lots or charging stations. And ideally, they wouldn’t have to move heavy loads for very long shifts.

“If you have a 24-hour, round-the-clock type of [work schedule], battery electrics aren’t very practical because you can’t stop to plug in for the four or five hours that it would take to recharge it,” said Ray Gallant, vice president of sustainability and productivity services at Volvo Construction Equipment.

Volvo says it often sells or leases electric machines for job sites where it pays to limit noise and air pollution. The Toronto Zoo used one of the company’s machines to avoid upsetting animals while repairing their enclosures. Cemeteries have bought excavators to quietly dig graves without disturbing mourners. Construction crews working on busy city streets use the machines to avoid annoying the neighbors or polluting their air.

At the Molly Pitcher dairy farm five miles down the road from Volvo Construction Equipment, farmers use an electric wheel loader to move feed, clean out barn floors and help lift and maintain pumps. The farmers say it’s better for the cattle to be around quieter machinery. Plus, they can charge the battery for free because the farm generates its own electricity using a device that converts manure into power.

“The more I can use that electricity, the more profitable we are,” said Keith Jones, the farm owner.

On other job sites where electric vehicles aren’t practical, construction crews can cut their emissions by running their machines on greener fuels, such as renewable diesel made from crops or used cooking oil. California now requires all off-road equipment to run on renewable diesel.

“There, you’re getting up to a 70 percent carbon benefit relative to running a diesel fuel, so that could be a really key intermediate step,” said Tom Durbin, a faculty researcher at the Center for Environmental Research and Technology at the University of California, Riverside.

One day, crews could upgrade to machines that run on pure hydrogen, a fuel that creates zero carbon emissions — but those mainly exist as prototypes today.



Jun 15, 2024

Hot Air


“It all started with an enquiry from a nurse,” Dr Karl Kruszelnicki told listeners to his science phone-in show on the Triple J radio station in Brisbane. “She wanted to know whether she was contaminating the operating theatre she worked in by quietly farting in the sterile environment during operations, and I realised that I didn't know. But I was determined to find out.”

Dr Kruszelnicki then described the method by which he had established whether human flatus was germ-laden, or merely malodorous. “I contacted Luke Tennent, a microbiologist in Canberra, and together we devised an experiment. He asked a colleague to break wind directly onto two Petri dishes from a distance of 5 centimetres, first fully clothed, then with his trousers down. Then he observed what happened. Overnight, the second Petri dish sprouted visible lumps of two types of bacteria that are usually found only in the gut and on the skin. But the flatus which had passed through clothing caused no bacteria to sprout, which suggests that clothing acts as a filter.


“Our deduction is that the enteric zone in the second Petri dish was caused by the flatus itself, and the splatter ring around that was caused by the sheer velocity of the fart, which blew skin bacteria from the cheeks and blasted it onto the dish. 

It seems, therefore, that flatus can cause infection if the emitter is naked, but not if he or she is clothed. But the results of the experiment should not be considered alarming, because neither type of bacterium is harmful. In fact, they're similar to the ‘friendly’ bacteria found in yoghurt.

“Our final conclusion? Don't fart naked near food. All right, it's not rocket science. But then again, maybe it is?”

Jun 9, 2024

Today's Nerdy Thing

Does this explain why we chose a snake to be the villain in the Garden of Eden story?


May 20, 2024

Today's Corporate Fuckery


This piece is way too fuckin' long, so they can't bitch about anybody feeling the need to TLDR it -  but it's good to have this kinda thing on the record.

It reads like the first 20 minutes of a disaster movie, where the scientist is trying to do what's right, and the suits shut her down.


Toxic Gaslighting: How 3M Executives Convinced a Scientist the Forever Chemicals She Found in Human Blood Were Safe

Decades ago, Kris Hansen showed 3M that its PFAS chemicals were in people’s bodies. Her bosses halted her work. As the EPA now forces the removal of the chemicals from drinking water, she wrestles with the secrets that 3M kept from her and the world.


by Sharon Lerner, photography by Haruka Sakaguchi, special to ProPublica May 20, 2024

This story is exempt from our Creative Commons license until July 19.

Kris Hansen had worked as a chemist at the 3M Corporation for about a year when her boss, an affable senior scientist named Jim Johnson, gave her a strange assignment. 3M had invented Scotch Tape and Post-­it notes; it sold everything from sandpaper to kitchen sponges. But on this day, in 1997, Johnson wanted Hansen to test human blood for chemical contamination.

Several of 3M’s most successful products contained man-made compounds called fluorochemicals. In a spray called Scotchgard, fluorochemicals protected leather and fabric from stains. In a coating known as Scotchban, they prevented food packaging from getting soggy. In a soapy foam used by firefighters, they helped extinguish jet-fuel fires. Johnson explained to Hansen that one of the company’s fluorochemicals, PFOS — short for perfluorooctanesulfonic acid — often found its way into the bodies of 3M factory workers. Although he said that they were unharmed, he had recently hired an outside lab to measure the levels in their blood. The lab had just reported something odd, however. For the sake of comparison, it had tested blood samples from the American Red Cross, which came from the general population and should have been free of fluorochemicals. Instead, it kept finding a contaminant in the blood.

Johnson asked Hansen to figure out whether the lab had made a mistake. Detecting trace levels of chemicals was her specialty: She had recently written a doctoral dissertation about tiny particles in the atmosphere. Hansen’s team of lab technicians and junior scientists fetched a blood sample from a lab-­supply company and prepped it for analysis. Then Hansen switched on an oven-­size box known as a mass spectrometer, which weighs molecules so that scientists can identify them.

As the lab equipment hummed around her, Hansen loaded a sample into the machine. A graph appeared on the mass spectrometer’s display; it suggested that there was a compound in the blood that could be PFOS. That’s weird, Hansen thought. Why would a chemical produced by 3M show up in people who had never worked for the company?

Hansen didn’t want to share her results until she was certain that they were correct, so she and her team spent several weeks analyzing more blood, often in time-consuming overnight tests. All the samples appeared to be contaminated. When Hansen used a more precise method, liquid chromatography, the results left little doubt that the chemical in the Red Cross blood was PFOS.

Hansen now felt obligated to update her boss. Johnson was a towering, bearded man, and she liked him: He seemed to trust her expertise, and he found something to laugh about in most conversations. But, when she shared her findings, his response was cryptic. “This changes everything,” he said. Before she could ask him what he meant, he went into his office and closed the door.

This was not the first time that Hansen had found a chemical where it didn’t belong. A wiry woman who grew up skiing competitively, Hansen had always liked to spend time outdoors; for her chemistry thesis at Williams College, she had kayaked around the former site of an electric company on the Hoosic River, collecting crayfish and testing them for industrial pollutants called polychlorinated biphenyls, or PCBs. Her research, which showed that a drainage ditch at the site was leaking the chemicals, prompted a news story and contributed to a cleanup effort overseen by the Massachusetts Department of Environmental Protection. At 3M, Hansen assumed that her bosses would respond to her findings with the same kind of diligence and care.

Hansen stayed near Johnson’s office for the rest of the day, anxiously waiting for him to react to her research. He never did. In the days that followed, Hansen sensed that Johnson had notified some of his superiors. She remembers his boss, Dale Bacon, a paunchy fellow with gray hair, stopping by her desk and suggesting that she had made a mistake. “I don’t think so,” she told him. In subsequent weeks, Hansen and her team ordered fresh blood samples from every supplier that 3M worked with. Each of the samples tested positive for PFOS.

In the middle of this testing, Johnson suddenly announced that he would be taking early retirement. After he packed up his office and left, Hansen felt adrift. She was so new to corporate life that her office clothes — pleated pants and dress shirts — still felt like a costume. Johnson had always guided her research, and he hadn’t told Hansen what she should do next. She reminded herself of what he had said — that the chemical wasn’t harmful in factory workers. But she couldn’t be sure that it was harmless. She knew that PCBs, for example, were mass-produced for years before studies showed that they accumulate in the food chain and cause a range of health issues, including damage to the brain. The most reliable way to gauge the safety of chemicals is to study them over time, in animals and, if possible, in humans.

What Hansen didn’t know was that 3M had already conducted animal studies — two decades earlier. They had shown PFOS to be toxic, yet the results remained secret, even to many at the company. In one early experiment, conducted in the late ’70s, a group of 3M scientists fed PFOS to rats on a daily basis. Starting at the second-lowest dose that the scientists tested, about 10 milligrams for every kilogram of body weight, the rats showed signs of possible harm to their livers, and half of them died. At higher doses, every rat died. Soon afterward, 3M scientists found that a relatively low daily dose, 4.5 milligrams for every kilogram of body weight, could kill a monkey within weeks. (Based on this result, the chemical would currently fall into the highest of five toxicity levels recognized by the United Nations.) This daily dose of PFOS was orders of magnitude greater than the amount that the average person would ingest, but it was still relatively low — roughly comparable to the dose of aspirin in a standard tablet.

In 1979, an internal company report deemed PFOS “certainly more toxic than anticipated” and recommended longer-term studies. That year, 3M executives flew to San Francisco to consult Harold Hodge, a respected toxicologist. They told Hodge only part of what they knew: that PFOS had sickened and even killed laboratory animals and had caused liver abnormalities in factory workers. According to a 3M document that was marked “CONFIDENTIAL,” Hodge urged the executives to study whether the company’s fluorochemicals caused reproductive issues or cancer. After reviewing more data, he told one of them to find out whether the chemicals were present “in man,” and he added, “If the levels are high and widespread and the half-life is long, we could have a serious problem.” Yet Hodge’s warning was omitted from official meeting notes, and the company’s fluorochemical production increased over time.

Hansen’s bosses never told her that PFOS was toxic. In the weeks after Johnson left 3M, however, she felt that she was under a new level of scrutiny. One of her superiors suggested that her equipment might be contaminated, so she cleaned the mass spectrometer and then the entire lab. Her results didn’t change. Another encouraged her to repeatedly analyze her syringes, bags and test tubes, in case they had tainted the blood. (They had not.) Her managers were less concerned about PFOS, it seemed to Hansen, than about the chance that she was wrong.

Sometimes Hansen doubted herself. She was 28 and had only recently earned her Ph.D. But she continued her experiments, if only to respond to the questions of her managers. 3M bought three additional mass spectrometers, which each cost more than a car, and Hansen used them to test more blood samples. In late 1997, her new boss, Bacon, even had her fly out to the company that manufactured the machines, so that she could repeat her tests there. She studied the blood of hundreds of people from more than a dozen blood banks in various states. Each sample contained PFOS. The chemical seemed to be everywhere.

When 3M was founded, in 1902, it was known as the Minnesota Mining and Manufacturing Company. After its mining operations flopped, the company pivoted to sandpaper and then to a series of clever inventions aimed at improving everyday life. An early employee noticed that autoworkers were struggling to paint two-tone cars, which were popular at the time; he eventually invented masking tape, using crêpe paper and cabinetmaker’s glue. Another 3M employee created Post-it notes to help him bookmark passages in his church hymnal. An official history of 3M, published for the company’s 100th anniversary, celebrated its “tolerance for tinkerers.”

Fluorochemicals had their origins in the American effort to build the atomic bomb. During the Second World War, scientists for the Manhattan Project developed one of the first safe processes for bonding carbon to fluorine, a dangerously reactive element that experts had nicknamed “the wildest hellcat” of chemistry. After the war, 3M hired some Manhattan Project chemists and began mass-producing chains of carbon atoms bonded to fluorine atoms. The resulting chemicals proved to be astonishingly versatile, in part because they resist oil, water and heat. They are also incredibly long-lasting, earning them the moniker “forever chemicals.”

In the early ’50s, 3M began selling one of its fluorochemicals, PFOA, to the chemical company DuPont for use in Teflon. Then, a couple of years later, a dollop of fluorochemical goo landed on a 3M employee’s tennis shoe, where it proved impervious to stains and impossible to wipe off. 3M now had the idea for Scotchgard and Scotchban. By the time Hansen was in elementary school, in the ’70s, both products were ubiquitous. Restaurants served French fries in Scotchban-treated packaging. Hansen’s mother sprayed Scotchgard on the living-­room couch.

Hansen grew up in Lake Elmo, Minnesota, not far from 3M’s headquarters. Her father was one of the company’s star engineers and was even inducted into its hall of fame in 1979; he had helped to create Scotch-Brite scouring pads and Coban wrap, a soft alternative to sticky bandages. Once, he molded some fibers into cups, thinking that they might make a good bra. They turned out to be miserably uncomfortable, so he and his colleagues placed them over their mouths, giving the company the inspiration for its signature N95 mask.

Hansen never intended to follow her father to the company. She spent her childhood summers catching turtles and leopard frogs at the lake and hoped to have a career in environmental conservation. Her first job after earning her chemistry Ph.D. was on a boat, which took her to remote parts of the Pacific Ocean. But the voyage left her so seasick that she lost 20 pounds, and she soon retreated to Minnesota. In 1996, at her father’s suggestion, Hansen applied for a position in 3M’s environmental lab.

After Hansen started her PFOS research, her relationships with some colleagues seemed to deteriorate. One afternoon in 1998, a trim 3M epidemiologist named Geary Olsen arrived with several vials of blood and asked her to test them. The next morning, she read the results to him and several colleagues — positive for PFOS. As Hansen remembers it, Olsen looked triumphant. “Those samples came from my horse,” he said — and his horse certainly wasn’t eating at McDonald’s or trotting on Scotchgarded carpets. Hansen felt that he was trying to humiliate her. (Olsen did not respond to requests for comment.) What Hansen wanted to know was how PFOS was making its way into animals.

She found an answer in data from lab rats, which also appeared to have fluorochemicals in their blood. Rats that had more fish meal in their diets, she discovered, tended to have higher levels of PFOS, suggesting that the chemical had spread through the food chain and perhaps through water. In male lab rats, PFOS levels rose with age, indicating that the chemical accumulated in the body. But, curiously, in female rats the levels sometimes fell. Hansen was unsettled when toxicology reports indicated why: Mother rats seemed to be offloading the chemical to their pups. Exposure to PFOS could begin before birth.

Another study confirmed that Scotchban and Scotchgard were sources of the chemical. PFOS wasn’t an official ingredient in either product, but both ­contained other fluorochemicals that, the study showed, broke down into PFOS in the bodies of lab rats. Hansen and her team ultimately found PFOS in eagles, chickens, rabbits, cows, pigs and other animals. They also found 14 ­additional fluorochemicals in human blood, including several produced by 3M. Some were present in wastewater from a 3M factory.

At one point, Hansen told her father, Paul, that she was frustrated by the way senior colleagues kept questioning her work. Paul had recently retired, but he had confidence in 3M’s top executives, and he suggested that she take her findings directly to them. But as a relatively new employee — and one of the few women scientists at a company of about 75,000 people — Hansen found the idea preposterous. When Paul offered to talk to some of 3M’s executives himself, she was mortified at the idea of her father interceding.

Hansen knew that if she could find a blood sample that didn’t contain PFOS then she might be able to convince her colleagues that the other samples did. She and her team began to study historical blood from the early decades of PFOS production. They soon found the chemical in blood from a 1969-71 Michigan breast cancer study. Then they ran an overnight test on blood that had been collected in rural China during the ’80s and ’90s. If any place were PFOS-free, she figured, it would be somewhere remote, where 3M products weren’t in widespread use.

The next morning, anxious to see the results, Hansen arrived at the lab before anyone else. For the first time since she had begun testing blood, some of the samples showed no trace of PFOS. She was so struck that she called her husband. There was nothing wrong with her equipment or methodology; PFOS, a man-made chemical produced by her employer, really was in human blood, practically everywhere. Hansen’s team found it in Swedish blood samples from 1957 and 1971. After that, her lab analyzed blood that had been collected before 3M created PFOS. It tested negative. Apparently, fluorochemicals had entered human blood after the company started selling products that contained them. They had leached out of 3M’s sprays, coatings and factories — and into all of us.

That summer, an in-house librarian at 3M delivered a surprising article to Hansen’s office mailbox. It had been written in 1981 by 3M scientists, and it described a method for measuring fluorine in blood, indicating that even back then the company was testing for fluorochemicals. One scientist mentioned in the article, Richard Newmark, still worked for 3M, in a low-lying structure nicknamed the “nerdy building.” Hansen arranged to meet with him there.

Newmark, a collegial man with a compact build, told Hansen that, more than 20 years before, two academic scientists, Donald Taves and Warren Guy, had discovered a fluorochemical in human blood. They had wondered whether Scotchgard might be its source, so they approached 3M. Newmark told her that his subsequent experiments had confirmed their suspicions — the chemical was PFOS — but 3M lawyers had urged his lab not to admit it.

As Hansen wrote all this down in a notebook, she felt anger rising inside her. Why had so many colleagues doubted the soundness of her results if earlier 3M experiments had already proved the same thing? After the meeting, she hurried back to the lab to find Bacon. “He knew!” she told him.

Bacon’s face remained expressionless. He told Hansen to type up her notes for him. She remembers him telling her not to email them. (In response to questions about Hansen’s account, Bacon said that he didn’t remember specifics. When I called Newmark, he told me that he could not remember her or anything about PFOS. “It’s been a very long time, and I’m in my mid-80s, and just do not remember stuff that well,” he said.)

A few months later, in early 1999, Bacon invited Hansen to an extraordinary meeting: She would have the chance to present her findings to 3M’s CEO, Livio D. DeSimone. Hansen spent several days rehearsing while driving and making dinner. On the day of the meeting, she took an elevator up to the executive suite; her stomach turned as a secretary pointed her to a conference room. Men in suits sat around a long table. Her boss, Bacon, was there. DeSimone, a portly man with white hair, sat at the head of the table.

A photo that Kris Hansen saved shows her father, Paul, with 3M CEO Livio D. DeSimone.
Almost as soon as Hansen placed her first transparency on the projector, the attendees began interrogating her: Why did she do this research? Who directed her to do it? Whom did she inform of the results? The executives seemed to view her diligence as a betrayal: Her data could be damaging to the company. She remembers defending herself, mentioning Newmark’s similar work in the ’70s and trying, unsuccessfully, to direct the conversation back to her research. While the executives talked over her, Hansen noticed that DeSimone’s eyes had closed and that his chin was resting on his dress shirt. The CEO appeared to have fallen asleep. (DeSimone died in 2017. A company spokesperson did not answer my questions about the meeting.)

After that meeting, Hansen remembers learning from Bacon that her job would be changing. She would only be allowed to do experiments that a supervisor had specifically requested, and she was to share her data with only that person. She would spend most of her time analyzing samples for studies that other employees were conducting, and she should not ask questions about what the results meant. Several members of her team were also being reassigned. Bacon explained that a different scientist at 3M would lead research into PFOS going forward. Hansen felt that she was being punished and struggled not to cry.

By this time - I'm betting - they'd been navigating the higher echelons of CYA mode - when the Suits really start to dig into the problem itself, but instead of looking for a way to get the fluorochemicals out of the products and move the company into a better, more ethical place, they just want to know how to defend the company's image when the inevitable legal actions against them begin, and to gauge the cost of all that legal action (settlements etc) vs retooling the process, and fixing the problem. (see Fight Club - The Recall Coordinator's Formula)

Even as Hansen was being sidelined, the results of her research were quietly making their way into the files of the Environmental Protection Agency. Since the ’70s, federal law has required that companies tell the EPA about any evidence indicating that a company’s products present “a substantial risk of injury to health or the environment.” In May 1998, 3M officials notified the agency, without informing Hansen, that the company had measured PFOS in blood samples from around the U.S. — a clear reference to Hansen’s work. It did not mention its animal research from the ’70s, and it said that the chemical caused “no adverse effects” at the levels the company had measured in its workers. A year later, 3M sent the EPA another letter, again without telling Hansen. This time, it informed the agency about the 14 other fluorochemicals, several of them made by 3M, that Hansen’s team had detected in human blood. The company reiterated that it did not believe that its products presented a substantial risk to human health.

Hansen recalls that in the summer of 1999, at an annual picnic that her parents hosted for 3M scientists, she was grilling corn when one of the creators of Scotchgard, a gray-haired man in glasses, confronted her. He accused her of trying to tear down the work of her colleagues. Did it make her feel powerful ruining other people’s careers? he asked. Hansen didn’t know how to respond, and he walked away.

Several of Hansen’s superiors had stopped greeting her in the hallways. When she presented a poster of her research at a 3M event, nobody asked her about it. She lost her appetite, and her pleated pants grew baggy. She started to worry that an angry co-worker might confront or even harm her in the company’s dark parking lot. She got into the habit of calling her husband before walking to her car.

A year after Hansen’s meeting with the CEO, 3M, under pressure from the EPA, made a very costly decision: It was going to discontinue its entire portfolio of PFOS-­related chemicals. In May 2000, for the first time, 3M officials revealed to the press that it had detected the chemical in blood banks. One executive claimed that the discovery was a “complete surprise.” The company’s medical director told The New York Times, “This isn’t a health issue now, and it won’t be a health issue.” But the newspaper also quoted a professor of toxicology. “The real issue is this stuff accumulates,” the professor said. “No chemical is totally innocuous, and it seems inconceivable that anything that accumulates would not eventually become toxic.”

Hansen was now pregnant with twins. Although she was heartened by 3M’s announcement — she saw it as evidence that her work had forced the company to act — she was also ready to leave the environmental lab, where she felt marginalized. After giving birth, she joined 3M’s medical devices team. But first, she decided to have one last blood sample tested for PFOS: her own. The results showed one of the lowest readings she’d seen in human blood. Immediately, she thought of the rats that had passed the chemical on to their pups.

Hansen told me that, for the next 19 years, she avoided the subject of fluorochemicals with the same intensity with which she had once pursued it. She focused on raising her kids and coaching a cross-country ski team; she worked a variety of jobs at 3M, none related to fluorochemicals. In 2002, when 3M announced that it would be replacing PFOS with another fluorochemical, PFBS, Hansen knew that it, too, would remain in the environment indefinitely. Still, she decided not to involve herself. She skipped over articles about the chemicals in scientific journals and newspapers, where they were starting to be linked to possible developmental, immune system and liver problems. (In 2006, after the EPA accused 3M of violating the Toxic Substances Control Act, in part by repeatedly ­failing to disclose the harms of fluorochemicals promptly, the company agreed to pay a small penalty of $1.5 million, without admitting wrongdoing.)

During that time, forever chemicals gained a new scientific name — per- and polyfluoroalkyl substances, or PFAS, an acronym that is vexingly similar to the specific fluorochemical PFOS. A swath of 150 square miles around 3M’s headquarters was found to be polluted with PFAS; scientists discovered PFOS and PFBS in local fish and various fluorochemicals in water that roughly 125,000 Minnesotans drank. Hansen’s husband, Peter, told me that, when friends asked Hansen about PFAS, she would change the subject. Still, she repeatedly told him — and herself — that the chemicals were safe.

In the 2016 book “Secrecy at Work,” two management theorists, Jana Costas and Christopher Grey, argue that there is nothing inherently wrong or harmful about keeping secrets. Trade secrets, for example, are protected by federal and state law on the grounds that they promote innovation and contribute to the economy. The authors draw on a large body of sociological research to illustrate the many ways that information can be concealed. An organization can compartmentalize a secret by slicing it into smaller components, preventing any one person from piecing together the whole. Managers who don’t want to disclose sensitive information may employ “stone-faced silence.” Secret-keepers can form a kind of tribe, dependent on one another’s continued discretion; in this way, even the existence of a secret can be kept secret. Such techniques become pernicious, Costas and Grey write, when a company keeps a dark secret, a secret about wrongdoing.

Certain unpredictable events — a leak, a lawsuit, a news story — can start to unspool a secret. In the case of forever chemicals, the unspooling began on a cattle farm. In 1998, a West Virginia farmer told a lawyer, Robert Bilott, that wastewater from a DuPont site seemed to be poisoning his cows: They had started to foam at the mouth, their teeth grew black and more than a hundred eventually fell over and died. Bilott sued and obtained tens of thousands of internal documents, which helped push forever chemicals into the public consciousness. The documents revealed that the farm’s water contained PFOA, the fluorochemical that DuPont had bought from 3M, and that both companies had long understood it to be toxic. (The lawsuit, which ended in a settlement, was dramatized in the film “Dark Waters,” starring Mark Ruffalo as Bilott.) Bilott later sued 3M over contamination in Minnesota, but the judge prohibited discussion of health repercussions; a jury ultimately decided in 3M’s favor. Finally, in 2010, the Minnesota attorney general’s office filed its own suit, alleging that 3M had harmed the environment and polluted drinking water. The company paid $850 million in a settlement, without an admission of fault or liability. The AG also released thousands more internal 3M records to the public.

The AG’s records helped me report a series of stories for The Intercept about forever chemicals. Much of my reporting, which started in 2015, focused on what 3M and DuPont knew, even as they continued to produce PFAS. But, as I reported on the cover-up, I wondered what it meant for a sprawling multinational company to know that its products were dangerous. Who knew? How much, exactly, did they know? And how had the company kept its secret? For many years, no one inside 3M would agree to speak with me.

Then, in 2021, John Oliver did a segment on his comedy news show, “Last Week Tonight,” about forever chemicals. The segment, which mentioned my reporting, said that they could cause cancer, immune-system issues and other problems. “The world is basically soaked in the Devil’s piss right now,” Oliver said. “And not in a remotely hot way.” One of Hansen’s former professors sent her the segment, and Hansen watched it at her kitchen table — a moment that would eventually lead her to me.

“This actually made me sad as there are so many inaccuracies,” Hansen wrote to her professor in response. But, when the professor asked her what was incorrect, Hansen didn’t know what to say. For the first time, she Googled the health effects of PFOS.

Hansen was deeply troubled by what she read. One paper, published in 2012 in the Journal of the American Medical Association, found that, in children, as PFOS levels rose so did the chance that vaccines were ineffective. Children with high levels of PFOS and other fluorochemicals were more likely to experience fevers, according to a 2016 study. Other research linked the chemicals to increased rates of infectious diseases, food allergies and asthma in children. Dozens of scientific papers had found that, in adults, even very low levels of PFOS could interfere with hormones, fertility, liver and thyroid function, cholesterol levels and fetal development. Even PFBS, the chemical that 3M chose as a replacement for PFOS, caused developmental and reproductive irregularities in animals, according to the Minnesota Department of Health.

Reading these studies, Hansen felt a paradoxical kind of relief: As bad as PFOS seemed to be, at least independent scientists were studying it. But she also felt enraged at the company and at herself. For years, she had repeated the company’s claim that PFOS was not harmful. “I’m not proud of that,” she told me. She felt “dirty” for ever collecting a 3M paycheck. When she read the documents released by the Minnesota AG, she was horrified by how much the company had known and how little it had told her. She found records of studies that she had conducted, as well as the typed notes from her meeting with Newmark.

In October 2022, after Hansen had been at 3M for 26 years, her job was eliminated, and she chose not to apply for a new one. Three months later, she wrote me an email, offering to speak about what she had witnessed inside the company. “If you’d be interested in talking further, please let me know,” she wrote. The next day, we had the first of dozens of conversations.

When Hansen first told me about her experiences, I felt conflicted. Her work seemed to have helped force 3M to stop making a number of toxic chemicals, but I kept thinking about the 20 years in which she had kept quiet. During my first visit to Hansen’s home, in February 2023, we sat in her kitchen, eating bread that her husband had just baked. She showed me pictures of her father and shared a color-coded timeline of 3M’s history with forever chemicals. On a bitterly cold walk in a local park, we tried to figure out if any of her colleagues, besides Newmark, had known that PFOS was in everyone’s blood. She often sprinkled her stories with such Midwesternisms as “holy ­buckets!”

During my second trip, this past August, I asked her why, as a scientist who was trained to ask questions, she hadn’t been more skeptical of claims that PFOS was harmless. In the awkward silence that followed, I looked out the window at some hummingbirds.

Hansen’s superiors had given her the same explanation that they gave journalists, she finally said — that factory workers were fine, so people with lower levels would be, too. Her specialty was the detection of chemicals, not their harms. “You’ve got literally the medical director of 3M saying, ‘We studied this, there are no effects,’” she told me. “I wasn’t about to challenge that.” Her income had helped to support a family of five. Perhaps, I wondered aloud, she hadn’t really wanted to know whether her company was poisoning the public.

To my surprise, Hansen readily agreed. “It almost would have been too much to bear at the time,” she told me. 3M had successfully compartmentalized its secret; Hansen had only seen one slice. (When I sent the company detailed questions about Hansen’s account, a spokesperson responded without answering most of them or mentioning Hansen by name.)

Recently, I thought back on Taves and Guy, the academic scientists who, in the ’70s, came so close to proving that 3M’s chemicals were accumulating in humans. Taves is 97, but when I called him he told me that he still remembers clearly when company representatives visited his lab at the University of Rochester. “They wanted to know everything about what we were doing,” he told me. But the exchange was not reciprocal. “I soon found out that they weren’t going to tell me anything.” 3M never confirmed to Taves or Guy, who was a postdoctoral student at the time, that its fluorochemicals were in human blood. “I’m sort of kicking myself for not having followed up on this more, but I didn’t have any research money,” Guy told me. He eventually became a dentist to support his wife and family. (He died this year at 81.) Taves, too, left the field, to become a psychiatrist, and the trail ended there.

Last year, while reading about the thousands of PFAS-related lawsuits that 3M was facing, I was intrigued to learn that one of them, filed by cities and towns with polluted water, had produced a new set of internal 3M documents. When I requested several from the plaintiff’s legal team, I saw two names that I recognized. In a document from 1991, a 3M scientist talked about using a mass spectrometer — the same tool that Hansen would use years later — to devise a technique for measuring PFOS in biological fluid. The author was Jim Johnson — and he had sent the report to his boss, Dale Bacon.

This revelation made me gasp. Johnson had been Hansen’s first boss and had instigated her research into PFOS. Bacon had questioned her findings and ultimately told her to stop her work. (In a sworn deposition, Bacon said that by the ’80s he had heard, during a water-cooler chat with a colleague, that Taves and Guy had found PFOS in human blood.) What I couldn’t understand was why Johnson would ask Hansen to investigate something that he had already studied himself — and then act surprised by the results.

Jim Johnson, who is now an 81-year-old widower, lives with several dogs in a pale-yellow house in North Dakota. When I first called him, he said that he had begun researching PFOS in the ’70s. “I did a lot of the very original work on it,” he told me. He said that when he saw the chemical’s structure he understood “within 20 minutes” that it would not break down in nature. Shortly thereafter, one of his experiments revealed that PFOS was binding to proteins in the body, causing the chemical to accumulate over time. He told me that he also looked for PFOS in an informal test of blood from the general population, around the late ’70s, and was not surprised when he found it there.

Johnson initially cited “480 pounds of dog” as a reason that I shouldn’t visit him, but he later relented. When I arrived, on a chilly day in November, we spent a few minutes standing outside his house, watching Snozzle, Sadie and Junkyard press their slobbery snouts against his living ­room window. Then we decamped to the nearest IHOP. Johnson, who was dressed in jeans and a flannel shirt, was so tall that he couldn’t comfortably fit into a booth. We sat at a table and ordered two bottomless coffees.

In an experiment in the early ’80s, Johnson fed a component of Scotchban to rats and found that PFOS accumulated in their livers, a result that suggested how the chemical would behave in humans. When I asked why that mattered to the company, he took a sip of coffee and said, “It meant they were screwed.”

At the time, Johnson said, he didn’t think PFOS caused significant health problems. Still, he told me, “it was obviously bad,” because man-made compounds from household products didn’t belong in the human body. He said that he argued against using fluorochemicals in toothpaste and diapers. Contrac­tors working for 3M had shaved rabbits, he said, and smeared them with the company’s fluorochemicals to see if PFOS showed up in their bodies. “They’d send me the livers and, yup, there it was,” he told me. “I killed a lot of rabbits.” But he considered his efforts largely futile. “These idiots were already putting it in food packaging,” he said.

Johnson told me, with seeming pride, that one reason he didn’t do more was that he was a “loyal soldier,” committed to protecting 3M from liability. Some of his assignments had come directly from company lawyers, he added, and he couldn’t discuss them with me. “I didn’t even report it to my boss, or anybody,” he said. “There are some things you take to your grave.” At one point, he also told me that, if he were asked to testify in a PFOS-related lawsuit, he would probably be of little help. “I’m an old man, and so I think they would find that I got extremely forgetful all of a sudden,” he said, and chuckled.

Out the windows of IHOP, I watched a light dusting of snow fall on the parking lot. In Johnson’s telling, a tacit rule prevailed at 3M: Not all questions needed to be asked, or answered. His realization that PFOS was in the general public’s blood “wasn’t something anyone cared to hear,” he said. He wasn’t, for instance, putting his research on posters and expecting a warm reception. Over the years, he tried to convince several executives to stop making PFOS altogether, he told me, but they had good reason not to. “These people were selling fluorochemicals,” he said. He retired as the second-highest-­ranked scientist in his division, but he claimed that important business decisions were out of his control. “It wasn’t for me to jump up and start saying, ‘This is bullshit!’” he said, and he was “not really too interested in getting my butt fired.” And so his portion of 3M’s secret stayed in a compartment, both known and not known.

Johnson said that he eventually tired of arguing with the few colleagues with whom he could speak openly about PFOS. “It was time,” he said. So he hired an outside lab to look for the chemical in the blood of 3M workers, knowing that it would also test blood bank samples for comparison — the first domino in a chain that would ultimately take the compound off the market. Oddly, he compared the head of the lab to a vending machine. “He gave me what I paid for,” Johnson said. “I knew what would happen.” Then Johnson tasked Hansen with something that he had long avoided: going beyond his initial experiments and meticulously documenting the chemical’s ubiquity. While Hansen took the heat, he took early retirement.

Johnson described Hansen as though she were a vending machine, too. “She did what she was supposed to do with the tools I left her,” he said.

I pointed out that Hansen had suffered professionally and personally, and that she now feels those experiences tainted her career. “I didn’t say I was a nice guy,” Johnson replied, and laughed. After four hours, we were nearing the bottom of our bottomless coffees.

Johnson has strayed from evidence-­based science in recent years. He now believes, for instance, that the theory of evolution is wrong, and that COVID-19 vaccines cause “turbo-cancers.” But his account of what happened at 3M closely matched Hansen’s, and when I asked him about meetings and experiments described in court documents he remembered them clearly.

When I called Hansen about my conversation with Johnson, she grew angrier than I’d ever heard her. “He knew the whole time!” she said. Then she had to get off the phone for an appointment. “So glad I’m going to see my therapist,” she added, and hung up.

I once thought of secrets as discrete, explosive truths that a heroic person could suddenly reveal. In the 1983 film “Silkwood,” which is based on real events, Karen Silkwood, a worker at a plutonium plant, assembles a thick folder documenting her employer’s shoddy safety practices; while driving to share them with a reporter, she dies in a mysterious one-car crash. In another adaptation of a true story, the 2015 film “Spotlight,” a source delivers a box of critical documents to The Boston Globe, helping the paper to publish an investigation into child sexual abuse within the Catholic Church. Talking to Hansen and Johnson, though, I saw that the truth can come out piecemeal over many years, and that the same people who keep secrets can help divulge them. Some slices of 3M’s secret are only now coming to light, and others may never come out.

Between 1951 and 2000, 3M produced at least 100 million pounds of PFOS and chemicals that degrade into PFOS. This is roughly the weight of the Titanic. After the late ’70s, when 3M scientists established that the chemical was toxic in animals and was accumulating in humans, it produced millions of pounds per year. Scientists are still struggling to grasp all the biological consequences. They have learned, just as Johnson did decades ago, that proteins in the body bind to PFOS. It enters our cells and organs, where even tiny amounts can cause stress and interfere with basic biological functions. It contributes to diseases that take many years to develop; at the time of a diagnosis, one’s PFOS level may have fallen, making it difficult to establish causation with any certainty.

The other day, I called Brad Creacey, who became an Air Force firefighter in the ’70s at the age of 18. He told me that several times a year, for practice, he and his comrades put on rubber boots and heavy silver uniforms that looked like spacesuits. Then a “torch man,” holding a stick tipped with a burning rag, ignited jet fuel that had been poured into an open-air pit. To extinguish the 100-foot-tall flames, Creacey and his colleagues sprayed them with aqueous film-forming foam, or AFFF. 3M manufactured it from several forever chemicals, including PFOS.

Creacey remembers that AFFF felt slick and sudsy, almost like soap, and dried out the skin on his hands until it cracked. To celebrate his last day on a military base in Germany, his friends dumped a ceremonial bucket on him. Only later, after working with firefighting foam at an airport in Monterey, California, did he start to wonder if a string of ailments — cysts on his liver, a nodule near his thyroid — were connected to the foam. He had high cholesterol, which diet and exercise were unable to change. Then he was diagnosed with thyroid cancer. “It makes me feel like I was a lab rat, like we were all disposable,” Creacey told me. “I’ve lost faith in human beings.”

It may be tempting to think of Creacey and his peers as unwitting research subjects; indeed, recent studies show that PFOS is associated with an increased risk of thyroid cancer and, in Air Force servicemen, an elevated risk of testicular cancer. But it is probably more accurate to say that we are all part of the experiment. Average levels of PFOS are falling, but nearly all people have at least one forever chemical in their blood, according to the Centers for Disease Control and Prevention. “When you have a contaminated site, you can clean it up,” Elsie Sunderland, an environmental chemist at Harvard University, told me. “When you ubiquitously introduce a toxicant at a global scale, so that it’s detectable in everyone ... we’re reducing public health on an incredibly large scale.” Once everyone’s blood is contaminated, there is no control group with which to compare, making it difficult to establish responsibility.

New health effects continue to be discovered. Researchers have found that exposure to PFAS during pregnancy can lead to developmental delays in children. Numerous recent studies have linked the chemicals to diabetes and obesity. This year, a study discovered 13 forever chemicals, including PFOS, in weeks-old fetuses from terminated pregnancies and linked the chemicals to biomarkers associated with liver problems. A team of New York University researchers estimated in 2018 that the costs of just two forever chemicals, PFOA and PFOS — in terms of disease burden, disability and health-care expenses — amounted to as much as $62 billion in a single year. This exceeds the current market value of 3M.

Philippe Grandjean, a physician who helped discover that PFAS harm the immune system, believes that anyone exposed to these chemicals — essentially everyone — may have an elevated risk of cancer. Our immune systems often find and kill abnormal cells before they turn into tumors. “PFAS interfere with the immune system, and likely also this critical function,” he told me. Grandjean, who served as an expert witness in the Minnesota AG’s case, has studied many environmental contaminants, including mercury. The impact of PFAS was so much more extreme, he said, that one of his colleagues initially thought it was the result of nuclear radiation.

In April, the EPA took two historic steps to reduce exposure to PFAS. It said that PFOS and PFOA are “likely to cause cancer” and that no level of either chemical is considered safe; it deemed them hazardous substances under the Superfund law, increasing the government’s power to force polluters to clean them up. The agency also set limits for six PFAS in drinking water. In a few years, when the EPA begins enforcing the new regulations, local utilities will be required to test their water and remove any amount of PFOS or PFOA which exceeds four parts per trillion — the equivalent of one drop dissolved in several Olympic swimming pools. 3M has produced enough PFOS and chemicals that degrade into PFOS to exceed this level in all of the freshwater on earth. Meanwhile, many other PFAS continue to be used, and companies are still developing new ones. Thousands of the compounds have been produced; the Department of Defense still depends on many for use in explosives, semiconductors, cleaning fluids and batteries. PFAS can be found in nonstick cookware, guitar strings, dental floss, makeup, hand sanitizer, brake fluid, ski wax, fishing lines and countless other products.

In a statement, a 3M spokesperson told me that the company “is proactively managing PFAS,” and that 3M’s approach to the chemicals has evolved along with “the science and technology of PFAS, societal and regulatory expectations, and our expectations of ourselves.” He directed me to a fact sheet about their continued importance in society. “These substances are critical to multiple industries — including the cars we drive, planes we fly, computers and smart phones we use to stay connected, and more,” the fact sheet read.

Recently, 3M settled the lawsuit filed by cities and towns with polluted water. It will pay up to $12.5 billion to cover the costs of filtering out PFAS, depending on how many water systems need the chemicals removed. The settlement, however, doesn’t approach the scale of the problem. At least 45% of U.S. tap water is estimated to contain one or more forever chemicals, and one drinking water expert told me that the cost of removing them all would likely reach $100 billion.

In 2022, 3M said that it would stop making PFAS and would “work to discontinue the use of PFAS across its product portfolio,” by the end of 2025 — a pledge that it called “another example of how we are positioning 3M for continued sustainable growth.” But it acknowledged that more than 16,000 of its products still contained PFAS. Direct sales of the chemicals were generating $1.3 billion annually. 3M’s regulatory filings also allow for the possibility that a full phaseout won’t happen — for example, if 3M fails to find substitutes. “We are continuing to make progress on our announcement to exit PFAS manufacturing,” 3M’s spokesperson told me. The company and its scientists have not admitted wrong­doing or faced criminal liability for producing forever chemicals or for concealing their harms.

Hansen often wonders what her father would say about 3M if he were still alive. A few years ago, he began to show signs of dementia, which worsened during the COVID-19 pandemic. Every time Hansen explained to him that a novel coronavirus was sickening people around the world, he asked how he might contribute — forgetting that the N95 mask he helped to create was already protecting millions of people from infection. When he died, in January 2021, Hansen noticed some Coban wrap on his arm. It was shielding his delicate skin from tears, just as he had designed it to. “He invented that,” Hansen told the hospice nurse, who smiled politely.

After she left 3M, Hansen began volunteering at a local nature preserve, where she works to clear paths and protect native plants. Last August, she took me there, and we walked to a creek where she often spends time. The water is home to three species of trout, she told me. It is also polluted by forever chemicals that 3M once dumped upstream.

For most of our hike, a thick wall of flowers — purple joe-pye weed and goldenrod — made it impossible to see the creek bank. Then we came to a wooden bench. I climbed on top of it and looked down on the creek. As I listened to the gurgling of water and the buzzing of insects, I thought I understood why Hansen liked to come here. It was too late to save the creek from pollution; 3M’s chemicals could be there for thousands of years to come. Hansen just wanted to appreciate what was left and to leave the place a little better than she’d found it.

May 14, 2024

Today's Nerd Thing

No need to mark your calendars just yet, but we're homing in on it.

I got to watch live on TV in 1969 when Armstrong and Aldrin landed the first time.


God willin' and the crick don't rise I'll get to watch it happen again.



Humans are going back to the Moon to stay, but when that will be is becoming less clear

A 2019 Time magazine cover portrayed four astronauts running towards the Moon. Pictured alongside the headline “The Next Space Race”, one of the astronauts carried an American flag, one carried a Chinese flag and the other two belonged to space companies owned by billionaires: Elon Musk’s SpaceX and Jeff Bezos’ Blue Origin.

Until recently, it seemed as if the US and SpaceX were set to win this race to return to the Moon with Nasa’s Artemis programme. But a number of setbacks have called that into question. And Blue Origin, China and other countries and companies are continuing their own lunar efforts.

On January 9 2024, Nasa announced that it was delaying the Artemis 2 mission, the first crewed flight of the Space Launch System (SLS) and the Orion capsule – the vehicles built to send astronauts back to deep space. The flight would slip from late 2024 to no earlier than September 2025. This was due to some safety issues that need to be fixed on Orion.

Consequently, Artemis 3, which is supposed to involve the first crewed lunar landing since 1972, will take place no earlier than September 2026.
Artemis 3 is to use SpaceX’s Starship orbiter as the lander for two crew members. This mission is set to put the first woman and the first person of colour on the lunar surface.

A non-American crew member could also walk on the Moon by 2030, highlighting the fact that Nasa has involved international partners in the Artemis venture. Up until now, just 12 humans have set foot on the Moon. All of them have been male and all have been American.

However, the Starship orbiter, crucial to these aims, has experienced problems. A second test launch for the rocketship-like orbiter atop its huge booster rocket back in November 2023, was spectacularly destroyed eight minutes and six seconds after lift off.

It will have to be ready to go by 2026. But, before then, SpaceX will have to demonstrate that it can refuel in orbit and then land Starship on the Moon without crew.

At the same time, however, Blue Origin is also working on a lander, called Blue Moon. Blue Moon is due to be used as the Moon landing craft for the Artemis 5 and 6 missions in 2029 and 2030.

Time will tell which lander can actually be ready for use first. But competition is always a good stimulator, and it could accelerate achievements.

Commercial companies supporting Nasa in the Artemis program will have to put a lot of attention into what to do and when. The lives of crew members are at stake here, so missions have to proceed in a safe and sustainable manner.

As with Apollo, Nasa is also trying to use the program to inspire the next generation of scientists, engineers and mathematicians. Baby boomers like myself are very proud to be “Apollo kids” who were inspired to study scientific subjects by those momentous achievements – particularly the first steps on another world, viewed through black and white TVs in July 1969.

International competition


China is also preparing itself, together with several other countries including Russia, to develop a lunar base for humans, called the International Lunar Research Station (ILRS). Beijing and its partners will include also private sectors players and governmental and non-governmental organisations, with an organisational scheme which is a first.

The Chinese program’s first human missions to the lunar surface are expected by 2030. Among the sites where they want to land is the Moon’s south pole. Nasa also wants to land here, but few of Beijing’s choices are in overlap with the locations selected for Artemis.

The south pole is a target for both the US and China because countries want to extract the water ice that’s hidden in craters there. This water could be used for life support at lunar bases and to make rocket fuel, helping bring down the cost of space exploration.

Space programs are never on time, and postponements are normal. Space agencies are more cautious nowadays, even more than before, because few tragedies we experienced in the past are obliging them to think very carefully before launching humans in space.

Safety of the crew is mandatory, and it must be always the first priority. So, if this is the reason why we have to wait a bit more before few human beings, after decades, will walk again on the Moon, I’m happy to wait for it.

Going to space has never been easy, as demonstrated by several uncrewed missions to the Moon over the last 12 months – both governmental and commercial – which didn’t make it. But perhaps it’s better we fail now while we are preparing for the new phase of humanity’s history.

The Moon will soon experience human beings on its surface again, working and living on a regular basis. But when humans go back there, this time it will be to stay.


May 9, 2024

Today's Nerd Thing

Does it come as some kinda news that the whole alpha-macho MAGA-bro thing turns out to have been based on a myth? Does that surprise anybody?


Feb 1, 2024

Today's Nerd Thing

50 years ago, we sent guys to the moon, where they picked up a bunch of rocks, which turned out to be about the same age as Earth rocks, and had about the same composition.

There's a zombie planet trying to get out.


Jan 24, 2024

Today's Nerd Thing

Voyager 1 and Voyager 2 were launched about a month apart in 1977.

They're about 15 billion miles away, and while V1 went quiet this past December, the nerds are hoping to get a fix for it, and V2 seems to be doin' fine and goin' strong.

By golly, I love me some nerds.


In only 40,000 years, the Voyagers
will be closer to another star
than they are to our sun.




Jan 10, 2024

Today's Nerdy Thing

Sometimes knowing too much about how something is done kinda spoils the magic. For me, it just makes the magic more amazing. Especially when it's about the magic of music.

I can sing a little, and I've been banging around on my guitar for a good long time, and while I can usually play &/or sing the right notes at the right time, it only occasionally results in what I can reasonably call "real music".

So when I get a chance to see how that "real music" is made, I'm at once tickled by the beauty and the spectacle of it all - plus it's always good to learn something new - and I can see a very good excuse for not being better at it myself. Taken together, that's actually pretty comforting for me.

Aimee Nolte explains:




Dec 19, 2023

Down The Road


In 1916, Albert Einstein wrote down an equation describing the "stimulated emission of light". It was a tiny bit of his work that attracted no attention at the time. It just lay there for decades in a pile of other bits and pieces of quantum physics stuff.

40 years later, it became the foundation for a technology that led to the invention of the laser.

Neither Einstein nor the many nerds who followed were thinking, "Y'know what, I think barcodes and inventory control is what we should be working towards - and a digital music format would be cool too..."

Today, right about ⅓ of the world's entire GDP depends on some aspect of information technology - creating, processing, storing, retrieving and transmitting information - but if you had asked those nerds 50 or 60 or 70 years ago, "OK, so how does this benefit me right here and right now?", they wouldn't have had answers. And if instant gratification is your only criterion for whether or not you fund their work, you'd cut their budgets and the work would either be wasted, or delayed to the point of being lost - potentially for generations.

Twenty years before Einstein, an English physicist name JJ Thomson proved the existence of the electron, overturning 2,000 years of humans' "understanding" of the structure of atoms.

Neither of these discoveries had any practical application at the time.

Can you tell me what part of your existence right now isn't either dependent upon or tied in some way to electronics?

Support your local nerds

Sep 25, 2023

Today's Nerd Thing

The first permanent tools - the ones that were more than strictly ad hoc and disposable - probably predate our human ancestors.

"It is a testament to how difficult it is for intelligent life to emerge on a planet of tooth and claw."


Sep 24, 2023

Yay Nerds


I just fuckin' love me some nerds.

Imagine what the world could be like if what these guys are doing took priority over the utter bullshit ambitions of way too many asshole politicians.

The asteroid Bennu


A NASA Spacecraft Comes Home With an Asteroid Gift for Earth

The seven-year OSIRIS-REX mission ended on Sunday with the return of regolith from the asteroid Bennu, which might hold clues about the origins of our solar system and life.

A brown-and-white capsule that spent the last seven years swooping through the solar system — and sojourning at an asteroid — has finally come home. And it has brought a cosmic souvenir: a cache of space rock that scientists are hungry to get their hands on.

On Sunday morning, those scientists waited eagerly as the pod shot through Earth’s atmosphere at thousands of miles per hour. It gently parachuted down into the muddy landscape of the Utah Test and Training Range, about 80 miles west of Salt Lake City, at 8:52 a.m. local time.

The capsule’s landing is a major win for a NASA mission called OSIRIS-REX, which stands for Origins, Spectral Interpretation, Resources Identification and Security-Regolith Explorer. The spacecraft set out in 2016 to retrieve material from Bennu, a carbon-rich asteroid about 190 feet wider than the height of the Empire State Building. Researchers hope this pristine space dirt will reveal clues about the birth of our solar system and the genesis of life on Earth.

“This is a gift to the world,” said Dante Lauretta, a planetary scientist at the University of Arizona and the principal investigator of the OSIRIS-REX mission, at a news conference last month.

Scientists who were working on the mission endured many twists and turns, including a seven-year struggle to get the project greenlit by NASA. Their perseverance paid off as OSIRIS-REX became the first American spacecraft to retrieve material from an asteroid, bringing back a staggering amount of matter from space for scientists around the world to study. But the victorious final act means so much more for the OSIRIS-REX team members, many of whom “grew up on this mission,” according to Dr. Lauretta.

“A little bit of us is on that spacecraft,” said Rich Burns, the OSIRIS-REX program manager at NASA Goddard Space Flight Center, at the news conference. “And a little bit of us is coming home with it.”

Bennu, a near-Earth asteroid, is currently many millions of miles from our planet. Like other asteroids in the solar system, it is a geological relic of the protoplanetary disk — a swirling mix of gas and dust that eventually coalesced into planets — that surrounded our sun billions of years ago. One theory is that small worlds like Bennu once seeded Earth with the prebiotic ingredients needed to form life.

But it is difficult to test this idea using meteorites, pieces of asteroids that reach Earth’s surface, which are heated by the atmosphere and are then contaminated by microbes on the ground, Dr. Lauretta said. Instead, many scientists turn their eyes (and their instruments) to space.

This is not the first chunk of an asteroid brought back to Earth. In 2010, the Hayabusa mission, led by the Japanese space agency JAXA, managed, in spite of technical troubles, to recover less than a milligram of material from a near-Earth asteroid named Itokawa. A decade later, a follow-up mission, Hayabusa2, retrieved a few grams of space rock from Ryugu. With that sample, scientists have found evidence suggesting that asteroids had delivered water to the early Earth, and discovered the presence of uracil — a building block of RNA, a molecule that helps form proteins.

OSIRIS-REX’s delivery will provide an abundant new stock of space rock. The team anticipates about half a pound of unsullied asteroid dirt. Shogo Tachibana, a planetary scientist at the University of Tokyo who led the Hayabusa2 sample analysis and is now a co-investigator on OSIRIS-REX, has “no idea” whether Bennu will be anything like Ryugu — but it’s what he is most looking forward to finding out.

From the beginning, the mission was a marathon. American scientists had long dreamed of fetching dust from an asteroid, and in 2004, a group submitted an application for what would become OSIRIS-REX. But NASA returned the project with the lowest ranking: Category 4, or “thanks, but no thanks,” Dr. Lauretta said. “The first proposal just bombed.”

The team tried again in 2007. This time, it scored a ranking of Category 1 — but failed to snag funding because the budget was too large.

The third time was the charm. NASA selected the project in 2011. “So that began our real journey,” said Harold Connolly, a cosmochemist at Rowan University who joined OSIRIS-REX 15 years ago. The team spent another half-decade “making sure all our little ducks were in a row,” he said, including designing and building the spacecraft, mapping the trek to Bennu and plotting the science campaign.

OSIRIS-REX launched in 2016, embarking on a roundabout series of fuel-efficient loops before arriving at Bennu on Dec. 3, 2018.

ImageA view looking into the OSIRIS-REx Curation Lab, which has shiny white walls and a shiny light gray floor, and a metal working station that is sealed off with gloves.
The OSIRIS-REX Curation Lab, where samples will be processed, at the Johnson Space Center in Houston.Credit...Mark Felix/Agence France-Presse — Getty Images

Despite the meticulous planning, the mission repeatedly faced the unexpected. “I call Bennu the trickster,” Dr. Lauretta said endearingly. “Because it has challenged us constantly on this program.”

Mission specialists expected Bennu’s surface to consist of smooth, sandy seas of fine particles. But as the asteroid came into focus, they found it was rocky and rough, with boulders, some 10 stories tall, sprinkled throughout. That made finding a place where the spacecraft could safely retrieve a sample from the surface riskier.

Engineers were troubleshooting that problem when Bennu threw them another loop: It was spewing rubble into space. That was “really exciting scientifically,” said Sandy Freund, the OSIRIS-REX program manager at the aerospace company Lockheed Martin. But “from an engineering standpoint,” the discovery posed a new problem.

The mission scientists frantically churned out calculations to make sure OSIRIS-REX was safe from being struck by the asteroid’s gravelly plumes. The operations team swiftly wrote new navigation software that could compensate for the rugged terrain on Bennu.

The next big hurdle was to select a sample site: a place where the spacecraft could safely fill its canister with fine grain regolith. That was made more difficult by the uneven ground of Bennu. Photos of the asteroid revealed some sandy regions on the surface — but only inside bowl-shaped craters. “We got to get inside one of those,” Dr. Lauretta said, to the distress of the operations team. “There’s nowhere else to go.”

The margin for error was small. Touch down wrong, and the spacecraft may have faced a fate like Hayabusa, which crash-landed on its asteroid. Or worse: OSIRIS-REX comes down on a slope and runs into what Dr. Lauretta calls “the banana peel scenario,” where it slips and falls into a crater.

“And then it’s all over,” he said.

After two years of surveying the asteroid, the mission team chose a spot it named Nightingale, near the asteroid’s north pole. In October 2020, OSIRIS-REX punched the surface of Bennu using a tool that was supposed to bounce off Bennu like a pogo stick.

But it did not exactly bounce as planned. Dr. Connolly recalled that he was shocked at how deep the instrument penetrated into the asteroid — about one and a half feet.

“We thought it would be a little more firm,” he said. “But it turns out gravity is basically the only thing that’s holding it together.”

The blow excavated a 30-foot-wide crater and blasted dusty debris into space — an unintentional experiment that revealed some properties of Bennu’s subsurface.

The surprises didn’t end there. When the team checked to make sure it had collected a large enough sample, it found the chamber overflowing with regolith.

“We had overachieved,” Ms. Freund said. “It was wedged open and leaking into space.” Every movement of the spacecraft led to greater loss of Bennu’s dust, like the way salt comes out of a shaker.

The team immediately halted all planned maneuvers to prevent losing any more of its precious cargo. Instead, the crew rushed to stow what remained in the leaky chamber within the return capsule.

Six months later, OSIRIS-REX captured one last look at Nightingale and then began the two-year journey back to Earth. “It was definitely an adventure,” Dr. Lauretta said.

In the days leading up to the sample’s plunge into Earth’s atmosphere, Dr. Lauretta was having trouble sleeping. He tried to push away “all of the doom scenarios” like what happened with NASA’s Genesis, a probe that grabbed plasma from the solar wind to bring back to Earth. In 2004, it crashed into a Utah desert when the parachute for its return capsule failed to deploy. (Despite the rough landing, researchers were able to recover and analyze the sample.)

“And that felt like a gut punch then,” Dr. Lauretta said while squeezing a stress ball shaped like the OSIRIS-REX capsule. Approaching the latest sample return was “unlike anything I’ve ever felt before,” he added. “I feel like there’s an electric wire at the base of my spine, just tingling.”

Michael Puzio, an engineering major at North Carolina State University, also felt “a bit terrified” leading up to the sample’s return. In third grade, Mr. Puzio won a contest to name the asteroid Bennu. It ignited in him a love of space and a dream to be an astronaut.

“But I think it’s in good hands,” Mr. Puzio added. The mission team “is pretty good at math, so I’ve heard.”

At 2 a.m. local time on Sunday morning, the OSIRIS-REX command team in Littleton, Colo., evaluated the landing conditions and held a go-or-no-go poll on the capsule drop. The team voted go and OSIRIS-REX released the capsule at 4:42 a.m.

Four hours later, it entered Earth’s atmosphere. The first parachute inflated 19 miles above the surface; a second was deployed just minutes later, slowing the cargo’s speed to 11 miles per hour.

For Dr. Lauretta, the safe return is both a professional achievement and a personal one: Michael Drake, the former principal investigator of OSIRIS-REX, died only five months after the mission was funded. “You need to be the one that finishes the dream,” Dr. Lauretta said Dr. Drake told him. “And so I did.”

The capsule and its contents are headed to a temporary clean room near the Utah landing site and then will be transferred to NASA’s Johnson Space Center in Houston. Scientists plan to crack open the canister on Tuesday, and get a small amount of the material into the lab for what Dr. Connolly calls a “quick look” analysis. In October, the sample team will reveal the first results to the world, including Bennu’s composition and how it compares with material brought back from the asteroids studied by the Japanese missions.

Dr. Connolly struggled to express what it meant to him that the mission had come back to Earth.

“I feel like a little kid again,” he said. “I’m just so happy to be able to tell the story that these rocks contain.”

Scientists will spend the next two years conducting a more robust investigation of the asteroid. Small portions of the sample will be handed off to JAXA and the Canadian Space Agency for their own analyses.

Up to 75 percent of Bennu’s regolith will remain in storage so that scientists in the future can “work on the sample with new techniques that we don’t even know exist yet,” Dr. Connolly said.

The OSIRIS-REX mission may have come to an end, but the spacecraft remains fully operational in space. It will next visit Apophis, another near-Earth asteroid that was once seen as a major threat to crash into Earth. More recent measurements determined that the asteroid will pass by Earth in 2029, within one-tenth of the distance to the moon.

The new project is named OSIRIS-APEX, where APEX means Apophis Explorer, and may provide information for mitigating more hazardous encounters with asteroids.

The leader of OSIRIS-APEX will be Dani Mendoza DellaGiustina, a former student of Dr. Lauretta’s who is now a planetary scientist at the University of Arizona. It is another example of how the journey to Bennu and back has, from the project’s conception, raised a generation of scientists in the field.

“I’ve been working on some incarnation of this mission basically my entire adult life,” Dr. DellaGiustina said. She added that while she was “super stoked” about OSIRIS-REX’s return, “for me, it’s definitely not the last hurrah.”